Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1UBT_1)}(2) \setminus P_{f(1IQF_1)}(2)|=90\),
\(|P_{f(1IQF_1)}(2) \setminus P_{f(1UBT_1)}(2)|=78\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111100101101001000100001101101010011100101000001111110110111001100101111110111101101101011000110100011101011110100101111011010101101100110011101101110110100111011001000111010010010111100100001011010110111010000100110100110011101000101010000111011010110001011011011000
Pair
\(Z_2\)
Length of longest common subsequence
1UBT_1,1IQF_1
168
4
1UBT_1,6NCX_1
174
4
1IQF_1,6NCX_1
176
4
Newick tree
[
6NCX_1:88.63,
[
1UBT_1:84,1IQF_1:84
]:4.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{502
}{\log_{20}
502}-\frac{235}{\log_{20}235})=76.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1UBT_1
1IQF_1
97
90
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]