Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1TUB_1)}(2) \setminus P_{f(5SDA_1)}(2)|=161\),
\(|P_{f(5SDA_1)}(2) \setminus P_{f(1TUB_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001010110111011010101001001101010110000111100010011000111001101111010101100100100001101001101000110001010001100110111001001100001101101100111101011001110010100100001010101110100111010001100000100000111100011001000010100100001001110110010101010111010100100011101010111100111101001000010110100101011001100010010011001100101110010111101000001011010101101110001101111101101001101100001110111010001011010011101011011001010010001111000000111001
Pair
\(Z_2\)
Length of longest common subsequence
1TUB_1,5SDA_1
207
3
1TUB_1,4NKO_1
189
3
5SDA_1,4NKO_1
182
4
Newick tree
[
1TUB_1:10.65,
[
4NKO_1:91,5SDA_1:91
]:10.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{627
}{\log_{20}
627}-\frac{187}{\log_{20}187})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1TUB_1
5SDA_1
166
115.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]