Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1SUM_1)}(2) \setminus P_{f(1QYF_1)}(2)|=77\),
\(|P_{f(1QYF_1)}(2) \setminus P_{f(1SUM_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001100010010011101111100110001001100000110011100011001010100011011111011101110101110110110011000001100110110011101100111110000011011101110101000101001000100100010001110110010010011111011101011100100110101011010100000001111000111110000
Pair
\(Z_2\)
Length of longest common subsequence
1SUM_1,1QYF_1
160
3
1SUM_1,6PHW_1
185
4
1QYF_1,6PHW_1
191
3
Newick tree
[
6PHW_1:98.23,
[
1SUM_1:80,1QYF_1:80
]:18.23
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{465
}{\log_{20}
465}-\frac{230}{\log_{20}230})=68.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
1SUM_1
1QYF_1
83
83
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]