Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1SLU_1)}(2) \setminus P_{f(8XUO_1)}(2)|=21\),
\(|P_{f(8XUO_1)}(2) \setminus P_{f(1SLU_1)}(2)|=193\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001011001110101001100011010100000010101111001010001001110100001011100001100100110011001010000011010110111100000111110010010100011010001001110
Pair
\(Z_2\)
Length of longest common subsequence
1SLU_1,8XUO_1
214
4
1SLU_1,6TYR_1
174
3
8XUO_1,6TYR_1
166
4
Newick tree
[
1SLU_1:10.89,
[
6TYR_1:83,8XUO_1:83
]:18.89
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{894
}{\log_{20}
894}-\frac{142}{\log_{20}142})=209.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1SLU_1
8XUO_1
266
156
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]