Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1SLF_1)}(2) \setminus P_{f(7YOZ_1)}(2)|=59\),
\(|P_{f(7YOZ_1)}(2) \setminus P_{f(1SLF_1)}(2)|=72\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010000010101101110101000110011101110111010000111010000110100001110010101111011100000010010010100111101010001110010001011000111000100101
Pair
\(Z_2\)
Length of longest common subsequence
1SLF_1,7YOZ_1
131
5
1SLF_1,1GMG_1
119
3
7YOZ_1,1GMG_1
118
3
Newick tree
[
1SLF_1:63.71,
[
1GMG_1:59,7YOZ_1:59
]:4.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{274
}{\log_{20}
274}-\frac{135}{\log_{20}135})=43.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
1SLF_1
7YOZ_1
52
50.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]