Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1SBF_1)}(2) \setminus P_{f(4BKO_1)}(2)|=50\),
\(|P_{f(4BKO_1)}(2) \setminus P_{f(1SBF_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001010100111001011101011100010101001000101010011011000110110000101101110101010110000110111111111000100011011110000010011110100100010110101110100100100001011000110111000100011110110100000011001101000110110111011011011100001101011001101000101101001110011
Pair
\(Z_2\)
Length of longest common subsequence
1SBF_1,4BKO_1
138
4
1SBF_1,3UCE_1
152
5
4BKO_1,3UCE_1
166
4
Newick tree
[
3UCE_1:82.80,
[
1SBF_1:69,4BKO_1:69
]:13.80
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{670
}{\log_{20}
670}-\frac{253}{\log_{20}253})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1SBF_1
4BKO_1
141
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]