Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1RDX_1)}(2) \setminus P_{f(5YEZ_1)}(2)|=107\),
\(|P_{f(5YEZ_1)}(2) \setminus P_{f(1RDX_1)}(2)|=60\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001110001101001110010010101010011001001101100110011110101111000101001001011000111011000110011100000011110100010011010110100010011011011110000000010000110110011111011010101111111011001110111101111000101000101001001010010111000100001110001101110110111010001101111101100001010101100001110110011111001001110111001000111111010010011010000110
Pair
\(Z_2\)
Length of longest common subsequence
1RDX_1,5YEZ_1
167
4
1RDX_1,1RHY_1
166
3
5YEZ_1,1RHY_1
171
3
Newick tree
[
5YEZ_1:85.00,
[
1RDX_1:83,1RHY_1:83
]:2.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{546
}{\log_{20}
546}-\frac{209}{\log_{20}209})=96.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1RDX_1
5YEZ_1
122
97.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]