Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1RCL_1)}(2) \setminus P_{f(6RUD_1)}(2)|=22\),
\(|P_{f(6RUD_1)}(2) \setminus P_{f(1RCL_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010001000001001011101100000000011000010000000110111011000111001110011011100111000000111100011010011100100
Pair
\(Z_2\)
Length of longest common subsequence
1RCL_1,6RUD_1
147
3
1RCL_1,6JAE_1
229
3
6RUD_1,6JAE_1
146
5
Newick tree
[
1RCL_1:10.78,
[
6RUD_1:73,6JAE_1:73
]:29.78
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{434
}{\log_{20}
434}-\frac{106}{\log_{20}106})=99.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
1RCL_1
6RUD_1
121
78
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]