Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1QXK_1)}(2) \setminus P_{f(1JOV_1)}(2)|=102\),
\(|P_{f(1JOV_1)}(2) \setminus P_{f(1QXK_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000100100010111100010001001100110110000000000101100001010000000101011010010000110011110001011011100000111110011001010010011000000111000010101100010000010010100100000001101000011011110011011011101000101010011111000111100101011000111100000100101001110100101111001001010011110110111100010001001000010111001111101100110100
Pair
\(Z_2\)
Length of longest common subsequence
1QXK_1,1JOV_1
182
3
1QXK_1,6GHS_1
184
3
1JOV_1,6GHS_1
158
4
Newick tree
[
1QXK_1:95.30,
[
1JOV_1:79,6GHS_1:79
]:16.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{591
}{\log_{20}
591}-\frac{270}{\log_{20}270})=90.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
1QXK_1
1JOV_1
117
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]