Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1QWK_1)}(2) \setminus P_{f(2NYH_1)}(2)|=136\),
\(|P_{f(2NYH_1)}(2) \setminus P_{f(1QWK_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010101010011011111110100011011011001101100110010100000111011001100111000011100011000111101011100010010100101011011111000100011011001100101100111101111001000010011111101100001010101100001010000010100010110110101011010010111110010000111110000001101110011001011110010000100010110101000011010000000011100110101001111000
Pair
\(Z_2\)
Length of longest common subsequence
1QWK_1,2NYH_1
172
4
1QWK_1,9CUM_1
176
3
2NYH_1,9CUM_1
118
3
Newick tree
[
1QWK_1:94.51,
[
2NYH_1:59,9CUM_1:59
]:35.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{434
}{\log_{20}
434}-\frac{117}{\log_{20}117})=95.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
1QWK_1
2NYH_1
120
81.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]