Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1QUF_1)}(2) \setminus P_{f(3WTP_1)}(2)|=139\),
\(|P_{f(3WTP_1)}(2) \setminus P_{f(1QUF_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001010010111010010111110110001110011111100101010110100101001111111100010100101001100001001000010101001000010010010110000100101100101011110011110010101111101011111000110110010011010001011011111110010110000100100001001010011000000101101010001100100110110000000010110110011011101111001101000000100110101000
Pair
\(Z_2\)
Length of longest common subsequence
1QUF_1,3WTP_1
177
3
1QUF_1,1JSR_1
136
4
3WTP_1,1JSR_1
175
3
Newick tree
[
3WTP_1:93.72,
[
1QUF_1:68,1JSR_1:68
]:25.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{447
}{\log_{20}
447}-\frac{143}{\log_{20}143})=90.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
1QUF_1
3WTP_1
117
83.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]