Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1QFL_1)}(2) \setminus P_{f(2RMQ_1)}(2)|=191\),
\(|P_{f(2RMQ_1)}(2) \setminus P_{f(1QFL_1)}(2)|=2\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01111011001110101111001100111011011100111111010011110111110100110011101111001011110010101101111110011010101111111001011100101011101101011001100110011010011001001100101000000111110000101100010100011111101001010101000100110100110101110001010110101100111111110010100011011101101101110101110111110001100111011010110100111101011000111010110101111111011110110110011101000110011101011111111101001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{401
}{\log_{20}
401}-\frac{12}{\log_{20}12})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1QFL_1
2RMQ_1
152
78
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]