Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1PME_1)}(2) \setminus P_{f(2JGU_1)}(2)|=52\),
\(|P_{f(2JGU_1)}(2) \setminus P_{f(1PME_1)}(2)|=84\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000000011110100111111111110110101101110000100110110111001000100101110010110000000001001011101000011110011011010010010110011110100110000100001001100110110010010110001010011100000101001111011010000011100011001001101110001000010110110111011000111110001001001111110100001001101010001101100001110011101000110110011010100010100111010100000100011101110101010011000100111000101011000
Pair
\(Z_2\)
Length of longest common subsequence
1PME_1,2JGU_1
136
4
1PME_1,1HPG_1
206
4
2JGU_1,1HPG_1
212
4
Newick tree
[
1HPG_1:11.11,
[
1PME_1:68,2JGU_1:68
]:46.11
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1155
}{\log_{20}
1155}-\frac{380}{\log_{20}380})=203.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1PME_1
2JGU_1
254
189
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]