Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1PDZ_1)}(2) \setminus P_{f(3FVA_1)}(2)|=231\),
\(|P_{f(3FVA_1)}(2) \setminus P_{f(1PDZ_1)}(2)|=2\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00100111001100010101010100001110111101100110011010010000001001101100100111101100110100000000110010100000011101111101110011110111110001101100001111111101101100110011100111110110010011011001000101110101110101110011111011000011011001100110010101110111001000001001010010001000101001001010100011110100110000100100100100101110010100100100110001000111010011010001010111000111011000010000011101111100101001110000011000011010001101101110010110
Pair
\(Z_2\)
Length of longest common subsequence
1PDZ_1,3FVA_1
233
2
1PDZ_1,7QTS_1
205
3
3FVA_1,7QTS_1
50
2
Newick tree
[
1PDZ_1:12.87,
[
7QTS_1:25,3FVA_1:25
]:10.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{440
}{\log_{20}
440}-\frac{6}{\log_{20}6})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1PDZ_1
3FVA_1
183
92.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]