Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1OZA_1)}(2) \setminus P_{f(7NHR_1)}(2)|=43\),
\(|P_{f(7NHR_1)}(2) \setminus P_{f(1OZA_1)}(2)|=103\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011111101111011100100000100101111000011001111110011010011010010010111000110000010101010110101101101111000111110110001100110011001111000101111111111000110110110001101111001001100111100110001001100110100010101010011000111111101111100111001000001010100001111000111101101011110000011010100011100100111000011011100001010010110101010111101001111100111101100111111011001100111
Pair
\(Z_2\)
Length of longest common subsequence
1OZA_1,7NHR_1
146
4
1OZA_1,9FNG_1
168
4
7NHR_1,9FNG_1
148
6
Newick tree
[
9FNG_1:81.10,
[
1OZA_1:73,7NHR_1:73
]:8.10
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1098
}{\log_{20}
1098}-\frac{371}{\log_{20}371})=191.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1OZA_1
7NHR_1
237
178.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]