Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1OYU_1)}(2) \setminus P_{f(6LKS_1)}(2)|=51\),
\(|P_{f(6LKS_1)}(2) \setminus P_{f(1OYU_1)}(2)|=135\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011011010011010100000100011110110001010110001001101100010011111111110000100110001011101110010101100010110011110111011001111100010110000100111011000100001001001100100101010001
Pair
\(Z_2\)
Length of longest common subsequence
1OYU_1,6LKS_1
186
4
1OYU_1,6EXB_1
148
4
6LKS_1,6EXB_1
178
3
Newick tree
[
6LKS_1:96.02,
[
1OYU_1:74,6EXB_1:74
]:22.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{505
}{\log_{20}
505}-\frac{175}{\log_{20}175})=96.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
1OYU_1
6LKS_1
122
90
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]