Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1OSM_1)}(2) \setminus P_{f(5KCF_1)}(2)|=88\),
\(|P_{f(5KCF_1)}(2) \setminus P_{f(1OSM_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000010010101010110010000010100001011101000100010101010001010000000001100111111011011010010001110010010011101110001000110001011100000011111011011100010010101011000101110001011100100011011011110100000000001111010010000111000100101100000000100110111100100101110001011101011010001001010100011001011100010001000100010110000100011100001111111001
Pair
\(Z_2\)
Length of longest common subsequence
1OSM_1,5KCF_1
176
4
1OSM_1,6XBL_1
195
4
5KCF_1,6XBL_1
203
4
Newick tree
[
6XBL_1:10.07,
[
1OSM_1:88,5KCF_1:88
]:15.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{599
}{\log_{20}
599}-\frac{257}{\log_{20}257})=96.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
1OSM_1
5KCF_1
123
109
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]