Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1NXO_1)}(2) \setminus P_{f(6QBL_1)}(2)|=76\),
\(|P_{f(6QBL_1)}(2) \setminus P_{f(1NXO_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111100001100110101000100110110100110010100101111011110101101100100000111111010000100111101110001001100001010101110000
Pair
\(Z_2\)
Length of longest common subsequence
1NXO_1,6QBL_1
134
3
1NXO_1,5BVD_1
185
3
6QBL_1,5BVD_1
209
3
Newick tree
[
5BVD_1:10.18,
[
1NXO_1:67,6QBL_1:67
]:40.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{213
}{\log_{20}
213}-\frac{93}{\log_{20}93})=39.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
1NXO_1
6QBL_1
50
45
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]