Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1NPJ_1)}(2) \setminus P_{f(5ARM_1)}(2)|=149\),
\(|P_{f(5ARM_1)}(2) \setminus P_{f(1NPJ_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111001011011111000101101111010001101110110101110000111001100101111010111111110000010101101000011001010110111111110010110001101010011111000111111111110110111111100110010101100001001100010110000100000011101000010110010100111011111101001101111001111000100000101111010011101010011010000111111111111001001110101000110110111110101010100011001111010
Pair
\(Z_2\)
Length of longest common subsequence
1NPJ_1,5ARM_1
204
4
1NPJ_1,7BCL_1
188
3
5ARM_1,7BCL_1
196
4
Newick tree
[
5ARM_1:10.94,
[
1NPJ_1:94,7BCL_1:94
]:7.94
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{476
}{\log_{20}
476}-\frac{133}{\log_{20}133})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1NPJ_1
5ARM_1
130
90
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]