Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1NOC_1)}(2) \setminus P_{f(1NYQ_1)}(2)|=60\),
\(|P_{f(1NYQ_1)}(2) \setminus P_{f(1NOC_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100100110001011001110110110000101001010001101011000100010001010011110011100110011010100101101000001001100100011010001010011011100001000101100011001100110101010110101001010111010010101111110101001011011101110101001000110011101011111101110111101110110110110011100100000001100110011100001101100011001011110010000101100001000110010000010110110111111110101011100011001101100001011000110000000
Pair
\(Z_2\)
Length of longest common subsequence
1NOC_1,1NYQ_1
156
4
1NOC_1,5AVY_1
168
6
1NYQ_1,5AVY_1
130
5
Newick tree
[
1NOC_1:85.74,
[
1NYQ_1:65,5AVY_1:65
]:20.74
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1033
}{\log_{20}
1033}-\frac{388}{\log_{20}388})=170.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1NOC_1
1NYQ_1
221
175
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]