Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1NIE_1)}(2) \setminus P_{f(7OKN_1)}(2)|=61\),
\(|P_{f(7OKN_1)}(2) \setminus P_{f(1NIE_1)}(2)|=98\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111111010011010101101111010001100110110101010000111000100101101010111111110000010101101000011001010110111111110010110000101010011111000110111110100110111111100110000101100001001100010110001100000001101000110110010100111011111101001101111001111000100000101111010011101010011010000111111011111001001110101000110110111110101010100011001101101
Pair
\(Z_2\)
Length of longest common subsequence
1NIE_1,7OKN_1
159
4
1NIE_1,3KMX_1
169
4
7OKN_1,3KMX_1
148
5
Newick tree
[
1NIE_1:84.54,
[
7OKN_1:74,3KMX_1:74
]:10.54
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{801
}{\log_{20}
801}-\frac{340}{\log_{20}340})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1NIE_1
7OKN_1
157
134.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]