Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1MYT_1)}(2) \setminus P_{f(3ZXL_1)}(2)|=26\),
\(|P_{f(3ZXL_1)}(2) \setminus P_{f(1MYT_1)}(2)|=172\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10101110011110100001111110011000100001110111110101110111010110110011011010100111101110001000011100101100111011000111011100110011111110101000011101
Pair
\(Z_2\)
Length of longest common subsequence
1MYT_1,3ZXL_1
198
4
1MYT_1,2EDX_1
140
3
3ZXL_1,2EDX_1
194
4
Newick tree
[
3ZXL_1:10.70,
[
1MYT_1:70,2EDX_1:70
]:35.70
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{688
}{\log_{20}
688}-\frac{146}{\log_{20}146})=154.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1MYT_1
3ZXL_1
194
121.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]