Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1MJT_1)}(2) \setminus P_{f(3SUY_1)}(2)|=205\),
\(|P_{f(3SUY_1)}(2) \setminus P_{f(1MJT_1)}(2)|=11\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00110010111001000000000110001001010100010000000011011011100000011011100101101001000101100100010010001010101010110011011000110011000010110001001100111010100101111100110001010001001100111000001010010101011111001010111110101110110110011100110000001100110110100100001000011101001100010001101100101100101100001001001010101111110101000000100001001011000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{448
}{\log_{20}
448}-\frac{101}{\log_{20}101})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1MJT_1
3SUY_1
149
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]