Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1MJL_1)}(2) \setminus P_{f(1IIZ_1)}(2)|=57\),
\(|P_{f(1IIZ_1)}(2) \setminus P_{f(1MJL_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10101001010100100000100101011101101100000000100100100001100111011010111001010000000110110011001110100100
Pair
\(Z_2\)
Length of longest common subsequence
1MJL_1,1IIZ_1
130
3
1MJL_1,6PST_1
102
4
1IIZ_1,6PST_1
134
2
Newick tree
[
1IIZ_1:70.30,
[
1MJL_1:51,6PST_1:51
]:19.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{224
}{\log_{20}
224}-\frac{104}{\log_{20}104})=38.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1MJL_1
1IIZ_1
50
46.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]