Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1LXA_1)}(2) \setminus P_{f(5KVQ_1)}(2)|=67\),
\(|P_{f(5KVQ_1)}(2) \setminus P_{f(1LXA_1)}(2)|=111\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100011101011100110111010111101111010110101100011101000110000100110110100010011010010110000100010100101011110011000111101011000011000111001011101010011111110110010111101111100111001110111010010111101011000110001101100100110001001001010110110001010110011100001110
Pair
\(Z_2\)
Length of longest common subsequence
1LXA_1,5KVQ_1
178
3
1LXA_1,5IKL_1
172
3
5KVQ_1,5IKL_1
166
4
Newick tree
[
1LXA_1:88.96,
[
5IKL_1:83,5KVQ_1:83
]:5.96
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{647
}{\log_{20}
647}-\frac{262}{\log_{20}262})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1LXA_1
5KVQ_1
137
113.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]