Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1KXQ_1)}(2) \setminus P_{f(2EPI_1)}(2)|=206\),
\(|P_{f(2EPI_1)}(2) \setminus P_{f(1KXQ_1)}(2)|=16\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0011000010001101101011011100000111011111010110001110010011100001100010000100001001100000111010101110010101111101000100001100011111001101001000010111000001001000011111011100001001110010011011111101010001111010111001001000111110011110011011101100000110101001001101101100101001001001101111110001111100000001011110011011010100111111110101100110000110011010010011111000111001010100001001100001001001111001101011101100100011110100111110000101000100111110000110100110000110101000101010100010011111010001
Pair
\(Z_2\)
Length of longest common subsequence
1KXQ_1,2EPI_1
222
3
1KXQ_1,4CVM_1
160
4
2EPI_1,4CVM_1
162
4
Newick tree
[
2EPI_1:10.24,
[
1KXQ_1:80,4CVM_1:80
]:22.24
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{596
}{\log_{20}
596}-\frac{100}{\log_{20}100})=145.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1KXQ_1
2EPI_1
192
113
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]