Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1KVC_1)}(2) \setminus P_{f(6LVK_1)}(2)|=48\),
\(|P_{f(6LVK_1)}(2) \setminus P_{f(1KVC_1)}(2)|=117\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001011001001101111101111000100001011000000001011111111011000001110000001001100110010001100100011001011001011110001010110101101000000011011110101000100101
Pair
\(Z_2\)
Length of longest common subsequence
1KVC_1,6LVK_1
165
4
1KVC_1,3QMD_1
146
3
6LVK_1,3QMD_1
195
4
Newick tree
[
6LVK_1:95.38,
[
1KVC_1:73,3QMD_1:73
]:22.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{468
}{\log_{20}
468}-\frac{155}{\log_{20}155})=92.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
1KVC_1
6LVK_1
114
85.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]