Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1KRV_1)}(2) \setminus P_{f(6PFQ_1)}(2)|=90\),
\(|P_{f(6PFQ_1)}(2) \setminus P_{f(1KRV_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111000101101100100111000101001100100001001000001100111011001110111010010010110010101010110000101100111110101010101100010001010011101100111100111011101100011111011000111011111110011001000000001000010001
Pair
\(Z_2\)
Length of longest common subsequence
1KRV_1,6PFQ_1
170
3
1KRV_1,6ICP_1
179
3
6PFQ_1,6ICP_1
177
4
Newick tree
[
6ICP_1:90.29,
[
1KRV_1:85,6PFQ_1:85
]:5.29
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{421
}{\log_{20}
421}-\frac{203}{\log_{20}203})=64.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
1KRV_1
6PFQ_1
81
78
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]