Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1JUH_1)}(2) \setminus P_{f(5WNU_1)}(2)|=189\),
\(|P_{f(5WNU_1)}(2) \setminus P_{f(1JUH_1)}(2)|=10\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00001110011001010110000010110100010010101100101101110011000111111010000000100001010111001000000011001001011001000101001000101111111100110011001000000101100000000011000010010010101010101000010101110011001101110011010111011110010000100111111010010000001001010001001011010111101101001011101100110011010111111110100000101001111001001100011011001001011101
Pair
\(Z_2\)
Length of longest common subsequence
1JUH_1,5WNU_1
199
4
1JUH_1,1IQE_1
168
3
5WNU_1,1IQE_1
173
3
Newick tree
[
5WNU_1:96.10,
[
1JUH_1:84,1IQE_1:84
]:12.10
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1872
}{\log_{20}
1872}-\frac{350}{\log_{20}350})=384.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1JUH_1
5WNU_1
272
207.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]