Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1JSD_1)}(2) \setminus P_{f(3NRG_1)}(2)|=113\),
\(|P_{f(3NRG_1)}(2) \setminus P_{f(1JSD_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010110000000001001000011100100110000011101001101111000010111010100011111001001100101101100110100100100110010000010111001101000100010000100010110000010110010000001001111111001100010001000000000100001000101111101110110101000101101100101000101111101011010001011000100100110000001110001110010001110010011100101111100111000
Pair
\(Z_2\)
Length of longest common subsequence
1JSD_1,3NRG_1
172
3
1JSD_1,2WAS_1
178
5
3NRG_1,2WAS_1
140
3
Newick tree
[
1JSD_1:92.61,
[
3NRG_1:70,2WAS_1:70
]:22.61
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{536
}{\log_{20}
536}-\frac{217}{\log_{20}217})=91.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
1JSD_1
3NRG_1
120
98.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]