Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1JKS_1)}(2) \setminus P_{f(5MOC_1)}(2)|=85\),
\(|P_{f(5MOC_1)}(2) \setminus P_{f(1JKS_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011000010000001001101011110000000011001101100000000001100001000101100100101101001000000111110111110110111000010000100110011011001001011010101001111000110101011011110010110010011101011110110001111010110111100111011011110000001101011000100001000011100110011100100010100010011101000001100110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{530
}{\log_{20}
530}-\frac{236}{\log_{20}236})=84.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
1JKS_1
5MOC_1
105
95
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]