Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1JBV_1)}(2) \setminus P_{f(6EQJ_1)}(2)|=99\),
\(|P_{f(6EQJ_1)}(2) \setminus P_{f(1JBV_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000011010011011001000011011011101000100101010010101101110110101101110001111010001110001110111101111101110010000101010010110111010100001011110111110000001101110110011100001110010111000111100111110101110111111101100100110100010110101011100100000010100101111100000011111001010100001110100100111100111010010001111101100101101110110011001101111111000011110010111001011111101011101100110010100010011110100110011110101011011000111100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{691
}{\log_{20}
691}-\frac{263}{\log_{20}263})=119.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1JBV_1
6EQJ_1
148
120.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]