Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ITQ_1)}(2) \setminus P_{f(1BTK_1)}(2)|=148\),
\(|P_{f(1BTK_1)}(2) \setminus P_{f(1ITQ_1)}(2)|=66\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011000100110001110100011101101100010000101001110000110101111110110100100000001100010010110010010100110100011100110010110111101100100011110110011100101000000111001110010001000110111001100100111110110101101010101001111100001001010000110011011000001111010000100000101001100100100111101111110101110110110010001011101100010010101111001101101100100100110001111001110000001000
Pair
\(Z_2\)
Length of longest common subsequence
1ITQ_1,1BTK_1
214
3
1ITQ_1,5EKJ_1
170
3
1BTK_1,5EKJ_1
172
4
Newick tree
[
1BTK_1:10.77,
[
1ITQ_1:85,5EKJ_1:85
]:15.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{538
}{\log_{20}
538}-\frac{169}{\log_{20}169})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ITQ_1
1BTK_1
141
102
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]