Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1IPJ_1)}(2) \setminus P_{f(1TBY_1)}(2)|=138\),
\(|P_{f(1TBY_1)}(2) \setminus P_{f(1IPJ_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100000011010000010011000010101100100001010010000110100010011110010101111110101110110000000001011010011110000110100000101101111100110000111000010000101100011000100010010011110000000001111010000100100010000000100000110100001100001101101010001010010111001010011111101000111111100101010111100000000000011010000101000011111110111101000101111110100000011110000110010001001111101001001100000001101010000010010011110111110
Pair
\(Z_2\)
Length of longest common subsequence
1IPJ_1,1TBY_1
180
3
1IPJ_1,6XHZ_1
172
4
1TBY_1,6XHZ_1
152
3
Newick tree
[
1IPJ_1:91.68,
[
6XHZ_1:76,1TBY_1:76
]:15.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{546
}{\log_{20}
546}-\frac{130}{\log_{20}130})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1IPJ_1
1TBY_1
149
98.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]