Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1IFV_1)}(2) \setminus P_{f(8FEO_1)}(2)|=110\),
\(|P_{f(8FEO_1)}(2) \setminus P_{f(1IFV_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111000010111010110110000001110110010010110101111010010100110000110010110010100000111101100010010100011011011011010101000101100110001010101110110101110100
Pair
\(Z_2\)
Length of longest common subsequence
1IFV_1,8FEO_1
118
1
1IFV_1,2RMN_1
157
4
8FEO_1,2RMN_1
177
2
Newick tree
[
2RMN_1:90.38,
[
1IFV_1:59,8FEO_1:59
]:31.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{171
}{\log_{20}
171}-\frac{16}{\log_{20}16})=55.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
1IFV_1
8FEO_1
74
40.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]