Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ICS_1)}(2) \setminus P_{f(5HHK_1)}(2)|=87\),
\(|P_{f(5HHK_1)}(2) \setminus P_{f(1ICS_1)}(2)|=66\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000110000100111101001101010001111110000001011010111000000001111110101100011100011111000010110111011010111110011011010000101010011000001101011001101101001001000011011001011100110111011010110101100110001000000011010000011101101110011000111010111000011000101111011001000011000110101001100100000111100100101111110000010011100010111010111001011001010111000000010000111100001110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{681
}{\log_{20}
681}-\frac{305}{\log_{20}305})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ICS_1
5HHK_1
132
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]