Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1IBJ_1)}(2) \setminus P_{f(9CSH_1)}(2)|=143\),
\(|P_{f(9CSH_1)}(2) \setminus P_{f(1IBJ_1)}(2)|=26\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001010001110110100011100001001010011010000100000101001100010100000100000010010100010100111010001011011001100010100101100110000001010001100111010010011010011111011001100100111100101100011001110011110010000100111111100011110010010001001001001101011111100011011100110111011100100111100011111111010011001011000010111110011010110011101000000100111010001010010011110011001010010111011011010111000110000010111011010011011011001011101001011000110101110010011001011100111
Pair
\(Z_2\)
Length of longest common subsequence
1IBJ_1,9CSH_1
169
4
1IBJ_1,5JPJ_1
203
3
9CSH_1,5JPJ_1
132
4
Newick tree
[
1IBJ_1:10.87,
[
9CSH_1:66,5JPJ_1:66
]:34.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{623
}{\log_{20}
623}-\frac{159}{\log_{20}159})=133.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1IBJ_1
9CSH_1
168
109.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]