Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1HWL_1)}(2) \setminus P_{f(6KRB_1)}(2)|=180\),
\(|P_{f(6KRB_1)}(2) \setminus P_{f(1HWL_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110011100010101100101000010111010011011001011011010011100100110000011010001100010010010011000000011111000011101111111111101000010111100010111000010011111111000111011001111011010001010111000011111001100000110100100011100101010000101111011001000110010001101011110100000001111011010100110011111011001100000111010100011101111011100101101101101101001100110000101101011000010100011010110111100111001010111101100001100100110110101111010111111110110001100000101001011000001
Pair
\(Z_2\)
Length of longest common subsequence
1HWL_1,6KRB_1
204
3
1HWL_1,7WUN_1
236
3
6KRB_1,7WUN_1
82
2
Newick tree
[
1HWL_1:12.13,
[
6KRB_1:41,7WUN_1:41
]:84.13
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{558
}{\log_{20}
558}-\frac{91}{\log_{20}91})=138.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1HWL_1
6KRB_1
178
104.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]