Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1HRN_1)}(2) \setminus P_{f(3VRW_1)}(2)|=109\),
\(|P_{f(3VRW_1)}(2) \setminus P_{f(1HRN_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000001110001000001011110110010111001000111100000010010100011010000000001001010000101011100011011110100111010011111111101011111111001110101110011001110001101000000000001110111110010000101001011001110101011011000110001011110011001010000100110111100011001100001101101010111000010010011000000001001110110111101101111101100100010000001111110
Pair
\(Z_2\)
Length of longest common subsequence
1HRN_1,3VRW_1
185
4
1HRN_1,1PJO_1
207
2
3VRW_1,1PJO_1
174
2
Newick tree
[
1HRN_1:10.60,
[
3VRW_1:87,1PJO_1:87
]:14.60
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{608
}{\log_{20}
608}-\frac{271}{\log_{20}271})=94.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
1HRN_1
3VRW_1
121
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]