Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1HON_1)}(2) \setminus P_{f(3WUY_1)}(2)|=81\),
\(|P_{f(3WUY_1)}(2) \setminus P_{f(1HON_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011111001100101011011000100110001100110011101000110111011100010011101111011111001001000111100011100101111000111001000101101110010111110000110011011011000011001001100001011000010110000110001111011001110100110010001011110110101101001001010000001111101011110010011111010000111111100110001011000100111001000001110011100110100101101001011011001010110011010010001111001011011000111100001110000111011100100100101111011001100000111001101
Pair
\(Z_2\)
Length of longest common subsequence
1HON_1,3WUY_1
152
5
1HON_1,3VEC_1
134
4
3WUY_1,3VEC_1
164
4
Newick tree
[
3WUY_1:82.68,
[
1HON_1:67,3VEC_1:67
]:15.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{780
}{\log_{20}
780}-\frac{349}{\log_{20}349})=117.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1HON_1
3WUY_1
147
134.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]