1GMW_1|Chains A, B, C|UREE|KLEBSIELLA AEROGENES (548)
>1FEE_1|Chains A, B|COPPER TRANSPORT PROTEIN ATOX1|Homo sapiens (9606)
>4RPT_1|Chains A, B|Capping enzyme protein|Rotavirus A (28875)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1GMW_1)}(2) \setminus P_{f(1FEE_1)}(2)|=84\),
\(|P_{f(1FEE_1)}(2) \setminus P_{f(1GMW_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010001011111010101110101000101010010011111101111011011000010011011110001011000011111010011100011101111010000001100110011101011011101011101000
Pair
\(Z_2\)
Length of longest common subsequence
1GMW_1,1FEE_1
118
3
1GMW_1,4RPT_1
146
4
1FEE_1,4RPT_1
122
3
Newick tree
[
4RPT_1:69.80,
[
1GMW_1:59,1FEE_1:59
]:10.80
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{211
}{\log_{20}
211}-\frac{68}{\log_{20}68})=47.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
1GMW_1
1FEE_1
61
44.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]