Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1GLG_1)}(2) \setminus P_{f(7FZM_1)}(2)|=115\),
\(|P_{f(7FZM_1)}(2) \setminus P_{f(1GLG_1)}(2)|=53\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100011101000000110110011000101110101110000000000000101111011011110110111110110010100111111000100011000001001100000011101011100111001101000101011110101101010100001100100011000010100111001010001011101101001011110001111111011010000011111101110111110011111011001000101010110011010111010010100011011011100001101000
Pair
\(Z_2\)
Length of longest common subsequence
1GLG_1,7FZM_1
168
3
1GLG_1,7UZH_1
186
3
7FZM_1,7UZH_1
194
4
Newick tree
[
7UZH_1:98.42,
[
1GLG_1:84,7FZM_1:84
]:14.42
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{444
}{\log_{20}
444}-\frac{135}{\log_{20}135})=92.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
1GLG_1
7FZM_1
116
84.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]