Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1FRG_1)}(2) \setminus P_{f(1XHO_1)}(2)|=102\),
\(|P_{f(1XHO_1)}(2) \setminus P_{f(1FRG_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111000100101011001010000000110010000110100001101101110110000011100101010100101010010100111000000000110111100101001011101011110000100111011011001010010101010100000111001000000000001000101000000000000001000000011100100
Pair
\(Z_2\)
Length of longest common subsequence
1FRG_1,1XHO_1
160
3
1FRG_1,1KIJ_1
178
5
1XHO_1,1KIJ_1
168
5
Newick tree
[
1KIJ_1:88.60,
[
1FRG_1:80,1XHO_1:80
]:8.60
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{365
}{\log_{20}
365}-\frac{148}{\log_{20}148})=65.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
1FRG_1
1XHO_1
85
69
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]