Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1FML_1)}(2) \setminus P_{f(8QLU_1)}(2)|=124\),
\(|P_{f(8QLU_1)}(2) \setminus P_{f(1FML_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000111100100101000011010111110001011101011001010011010011101001111000001001000111110001010110001010010101111001000000001110100101000111100000110011111110000110001110111101100101101100100111001001011011000001001101100110010101001001110000101111100001001110110110111001000010010001010010001110100000111110100110010110100010001000100110001000010010101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{569
}{\log_{20}
569}-\frac{218}{\log_{20}218})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1FML_1
8QLU_1
129
103.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]