Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1FEP_1)}(2) \setminus P_{f(4YMP_1)}(2)|=196\),
\(|P_{f(4YMP_1)}(2) \setminus P_{f(1FEP_1)}(2)|=21\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010001100000111011000101111001010010001110010011001111010100001001000010101111000111101011000001001101000001000111101100101101111100101111111011000101010101010101100000110000010101111001010101010000101101001000101100100111100111000101110101111001010110000101011000000000000000100000100000110101110011000011000000000110111110010100010001101010011100010111011100010110010000100100000110100011110110000001000101101110001010000110111010000111001011101001110010101111010011010000100110001010010111001010001010001000111010001111110110000000101101111001110010010011011101101010111000111000100110000000100101110001000101010001010001010100010000001011111000010100111101010100010101110011000110110100010111100111111000001100101010001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{854
}{\log_{20}
854}-\frac{130}{\log_{20}130})=203.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1FEP_1
4YMP_1
252
147.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]