Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1FDO_1)}(2) \setminus P_{f(4WMY_1)}(2)|=145\),
\(|P_{f(4WMY_1)}(2) \setminus P_{f(1FDO_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001101010010100101110010110101101000010101010011011000011010100111000011010110100110011001011000011011000100010100000110011011110001000101001101111000110111001100100001111110011000111100110100011011100100100101101011100100111101110111000100011110000110000011010010010010110100100110101010011111111100100110010010011110101101011101101000101100111110001100010011000011011110011100100100110011010101101110011000101011001100101111001110001011011110001100011101100110011011010101000101100110011011000000011001001010101100001101111011000000100100011000100101110110001111100100001111001001100000010100111111100110101000010011100011111000010110010100010011101000111110001100010110001000001101011100011000110000010001001111
Pair
\(Z_2\)
Length of longest common subsequence
1FDO_1,4WMY_1
190
4
1FDO_1,5NIR_1
260
3
4WMY_1,5NIR_1
190
3
Newick tree
[
5NIR_1:11.47,
[
1FDO_1:95,4WMY_1:95
]:24.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1021
}{\log_{20}
1021}-\frac{306}{\log_{20}306})=191.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1FDO_1
4WMY_1
249
175
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]