Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1EVZ_1)}(2) \setminus P_{f(2NLP_1)}(2)|=181\),
\(|P_{f(2NLP_1)}(2) \setminus P_{f(1EVZ_1)}(2)|=15\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000010001101001111101111011111100000010110100001011000000111101101100101000100100110111111100110111000110111010000111110001100001011101110111011101111101110110111001011010101100100110010001101100001100110110011111011101111110101111101110100101111101011111111101010000010001011001101111001000001110111010111011001010111000100110000010011101100110001111110001001001
Pair
\(Z_2\)
Length of longest common subsequence
1EVZ_1,2NLP_1
196
3
1EVZ_1,6ETG_1
182
4
2NLP_1,6ETG_1
216
3
Newick tree
[
2NLP_1:10.85,
[
1EVZ_1:91,6ETG_1:91
]:15.85
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{402
}{\log_{20}
402}-\frac{36}{\log_{20}36})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1EVZ_1
2NLP_1
142
78
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]