Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ERU_1)}(2) \setminus P_{f(9KNF_1)}(2)|=49\),
\(|P_{f(9KNF_1)}(2) \setminus P_{f(1ERU_1)}(2)|=121\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010000110011011100111101010101100110111001000000111101010000011000010011010110010011010110000101010011
Pair
\(Z_2\)
Length of longest common subsequence
1ERU_1,9KNF_1
170
3
1ERU_1,7OUW_1
175
2
9KNF_1,7OUW_1
185
9
Newick tree
[
7OUW_1:91.65,
[
1ERU_1:85,9KNF_1:85
]:6.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{356
}{\log_{20}
356}-\frac{105}{\log_{20}105})=77.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ERU_1
9KNF_1
97
68.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]