Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1EJR_1)}(2) \setminus P_{f(6HHG_1)}(2)|=89\),
\(|P_{f(6HHG_1)}(2) \setminus P_{f(1EJR_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100010101111011001011000111010001000100101111011001110101111001011100111100111101011100101111101101010101011111100111101011011110001011010010011101100111110111110010000111101001101100111011111010100101100011111111010011110111100110110010101110000100011100011111100100100011111011011010101011100001011001001000101111000101011001111000100001110011001111010000001110110111001011001010011110001000010100011000101110011100110101101101111011111101101101111111111010101101011000111111101000001011001111011100101001111101000100101100010101010100001010101100011011111000111
Pair
\(Z_2\)
Length of longest common subsequence
1EJR_1,6HHG_1
168
5
1EJR_1,6IPA_1
188
4
6HHG_1,6IPA_1
186
3
Newick tree
[
6IPA_1:96.46,
[
1EJR_1:84,6HHG_1:84
]:12.46
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1013
}{\log_{20}
1013}-\frac{446}{\log_{20}446})=149.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1EJR_1
6HHG_1
190
171.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]