Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1EDE_1)}(2) \setminus P_{f(1JVZ_1)}(2)|=118\),
\(|P_{f(1JVZ_1)}(2) \setminus P_{f(1EDE_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100100010010001101001001110111010010010001001110101010100100011111100110111101111100001100000010100011111100101001011100111111101111010010011110101100110011101110011011011000110100101001100111010010101011111000001110011011100001010100011011000101001111110001111011011011101010110110110110011001100110011000
Pair
\(Z_2\)
Length of longest common subsequence
1EDE_1,1JVZ_1
162
3
1EDE_1,7XHU_1
180
3
1JVZ_1,7XHU_1
150
3
Newick tree
[
1EDE_1:88.87,
[
1JVZ_1:75,7XHU_1:75
]:13.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{468
}{\log_{20}
468}-\frac{158}{\log_{20}158})=91.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
1EDE_1
1JVZ_1
121
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]